Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neural Netw ; 171: 171-185, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38091761

RESUMO

Previous research has examined resting electroencephalographic (EEG) data to explore brain activity related to meditation. However, previous research has mostly examined power in different frequency bands. The practical objective of this study was to comprehensively test whether other types of time-series analysis methods are better suited to characterize brain activity related to meditation. To achieve this, we compared >7000 time-series features of the EEG signal to comprehensively characterize brain activity differences in meditators, using many measures that are novel in meditation research. Eyes-closed resting-state EEG data from 49 meditators and 46 non-meditators was decomposed into the top eight principal components (PCs). We extracted 7381 time-series features from each PC and each participant and used them to train classification algorithms to identify meditators. Highly differentiating individual features from successful classifiers were analysed in detail. Only the third PC (which had a central-parietal maximum) showed above-chance classification accuracy (67 %, pFDR = 0.007), for which 405 features significantly distinguished meditators (all pFDR < 0.05). Top-performing features indicated that meditators exhibited more consistent statistical properties across shorter subsegments of their EEG time-series (higher stationarity) and displayed an altered distributional shape of values about the mean. By contrast, classifiers trained with traditional band-power measures did not distinguish the groups (pFDR > 0.05). Our novel analysis approach suggests the key signatures of meditators' brain activity are higher temporal stability and a distribution of time-series values suggestive of longer, larger, or more frequent non-outlying voltage deviations from the mean within the third PC of their EEG data. The higher temporal stability observed in this EEG component might underpin the higher attentional stability associated with meditation. The novel time-series properties identified here have considerable potential for future exploration in meditation research and the analysis of neural dynamics more broadly.


Assuntos
Meditação , Humanos , Encéfalo , Eletroencefalografia , Atenção , Descanso
2.
Elife ; 122023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37824184

RESUMO

Understanding how the brain's macroscale dynamics are shaped by underlying microscale mechanisms is a key problem in neuroscience. In animal models, we can now investigate this relationship in unprecedented detail by directly manipulating cellular-level properties while measuring the whole-brain response using resting-state fMRI. Here, we focused on understanding how blood-oxygen-level-dependent (BOLD) dynamics, measured within a structurally well-defined striato-thalamo-cortical circuit in mice, are shaped by chemogenetically exciting or inhibiting D1 medium spiny neurons (MSNs) of the right dorsomedial caudate putamen (CPdm). We characterize changes in both the BOLD dynamics of individual cortical and subcortical brain areas, and patterns of inter-regional coupling (functional connectivity) between pairs of areas. Using a classification approach based on a large and diverse set of time-series properties, we found that CPdm neuromodulation alters BOLD dynamics within thalamic subregions that project back to dorsomedial striatum. In the cortex, changes in local dynamics were strongest in unimodal regions (which process information from a single sensory modality) and weakened along a hierarchical gradient towards transmodal regions. In contrast, a decrease in functional connectivity was observed only for cortico-striatal connections after D1 excitation. Our results show that targeted cellular-level manipulations affect local BOLD dynamics at the macroscale, such as by making BOLD dynamics more predictable over time by increasing its self-correlation structure. This contributes to ongoing attempts to understand the influence of structure-function relationships in shaping inter-regional communication at subcortical and cortical levels.


Assuntos
Mapeamento Encefálico , Encéfalo , Camundongos , Animais , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Corpo Estriado , Neostriado
3.
Nat Commun ; 14(1): 6000, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752115

RESUMO

Systematic spatial variation in micro-architecture is observed across the cortex. These micro-architectural gradients are reflected in neural activity, which can be captured by neurophysiological time-series. How spontaneous neurophysiological dynamics are organized across the cortex and how they arise from heterogeneous cortical micro-architecture remains unknown. Here we extensively profile regional neurophysiological dynamics across the human brain by estimating over 6800 time-series features from the resting state magnetoencephalography (MEG) signal. We then map regional time-series profiles to a comprehensive multi-modal, multi-scale atlas of cortical micro-architecture, including microstructure, metabolism, neurotransmitter receptors, cell types and laminar differentiation. We find that the dominant axis of neurophysiological dynamics reflects characteristics of power spectrum density and linear correlation structure of the signal, emphasizing the importance of conventional features of electromagnetic dynamics while identifying additional informative features that have traditionally received less attention. Moreover, spatial variation in neurophysiological dynamics is co-localized with multiple micro-architectural features, including gene expression gradients, intracortical myelin, neurotransmitter receptors and transporters, and oxygen and glucose metabolism. Collectively, this work opens new avenues for studying the anatomical basis of neural activity.


Assuntos
Mapeamento Encefálico , Encéfalo , Humanos , Encéfalo/fisiologia , Magnetoencefalografia , Neurofisiologia , Receptores de Neurotransmissores
4.
JAMA Psychiatry ; 80(12): 1246-1257, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37728918

RESUMO

Importance: Psychotic illness is associated with anatomically distributed gray matter reductions that can worsen with illness progression, but the mechanisms underlying the specific spatial patterning of these changes is unknown. Objective: To test the hypothesis that brain network architecture constrains cross-sectional and longitudinal gray matter alterations across different stages of psychotic illness and to identify whether certain brain regions act as putative epicenters from which volume loss spreads. Design, Settings, and Participants: This case-control study included 534 individuals from 4 cohorts, spanning early and late stages of psychotic illness. Early-stage cohorts included patients with antipsychotic-naive first-episode psychosis (n = 59) and a group of patients receiving medications within 3 years of psychosis onset (n = 121). Late-stage cohorts comprised 2 independent samples of people with established schizophrenia (n = 136). Each patient group had a corresponding matched control group (n = 218). A sample of healthy adults (n = 356) was used to derive representative structural and functional brain networks for modeling of network-based spreading processes. Longitudinal illness-related and antipsychotic-related gray matter changes over 3 and 12 months were examined using a triple-blind randomized placebo-control magnetic resonance imaging study of the antipsychotic-naive patients. All data were collected between April 29, 2008, and January 15, 2020, and analyses were performed between March 1, 2021, and January 14, 2023. Main Outcomes and Measures: Coordinated deformation models were used to estimate the extent of gray matter volume (GMV) change in each of 332 parcellated areas by the volume changes observed in areas to which they were structurally or functionally coupled. To identify putative epicenters of volume loss, a network diffusion model was used to simulate the spread of pathology from different seed regions. Correlations between estimated and empirical spatial patterns of GMV alterations were used to quantify model performance. Results: Of 534 included individuals, 354 (66.3%) were men, and the mean (SD) age was 28.4 (7.4) years. In both early and late stages of illness, spatial patterns of cross-sectional volume differences between patients and controls were more accurately estimated by coordinated deformation models constrained by structural, rather than functional, network architecture (r range, >0.46 to <0.57; P < .01). The same model also robustly estimated longitudinal volume changes related to illness (r ≥ 0.52; P < .001) and antipsychotic exposure (r ≥ 0.50; P < .004). Network diffusion modeling consistently identified, across all 4 data sets, the anterior hippocampus as a putative epicenter of pathological spread in psychosis. Epicenters of longitudinal GMV loss were apparent in posterior cortex early in the illness and shifted to the prefrontal cortex with illness progression. Conclusion and Relevance: These findings highlight a central role for white matter fibers as conduits for the spread of pathology across different stages of psychotic illness, mirroring findings reported in neurodegenerative conditions. The structural connectome thus represents a fundamental constraint on brain changes in psychosis, regardless of whether these changes are caused by illness or medication. Moreover, the anterior hippocampus represents a putative epicenter of early brain pathology from which dysfunction may spread to affect connected areas.


Assuntos
Antipsicóticos , Transtornos Psicóticos , Masculino , Adulto , Humanos , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Antipsicóticos/uso terapêutico , Estudos Transversais , Estudos de Casos e Controles , Transtornos Psicóticos/diagnóstico por imagem , Transtornos Psicóticos/tratamento farmacológico , Transtornos Psicóticos/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos
5.
Nature ; 618(7965): 566-574, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37258669

RESUMO

The anatomy of the brain necessarily constrains its function, but precisely how remains unclear. The classical and dominant paradigm in neuroscience is that neuronal dynamics are driven by interactions between discrete, functionally specialized cell populations connected by a complex array of axonal fibres1-3. However, predictions from neural field theory, an established mathematical framework for modelling large-scale brain activity4-6, suggest that the geometry of the brain may represent a more fundamental constraint on dynamics than complex interregional connectivity7,8. Here, we confirm these theoretical predictions by analysing human magnetic resonance imaging data acquired under spontaneous and diverse task-evoked conditions. Specifically, we show that cortical and subcortical activity can be parsimoniously understood as resulting from excitations of fundamental, resonant modes of the brain's geometry (that is, its shape) rather than from modes of complex interregional connectivity, as classically assumed. We then use these geometric modes to show that task-evoked activations across over 10,000 brain maps are not confined to focal areas, as widely believed, but instead excite brain-wide modes with wavelengths spanning over 60 mm. Finally, we confirm predictions that the close link between geometry and function is explained by a dominant role for wave-like activity, showing that wave dynamics can reproduce numerous canonical spatiotemporal properties of spontaneous and evoked recordings. Our findings challenge prevailing views and identify a previously underappreciated role of geometry in shaping function, as predicted by a unifying and physically principled model of brain-wide dynamics.


Assuntos
Mapeamento Encefálico , Encéfalo , Humanos , Axônios/fisiologia , Encéfalo/anatomia & histologia , Encéfalo/citologia , Encéfalo/fisiologia , Imageamento por Ressonância Magnética , Neurônios/fisiologia
6.
PLoS Biol ; 21(3): e3002031, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36917567

RESUMO

Obsessive-compulsive disorder (OCD) and pathological gambling (PG) are accompanied by deficits in behavioural flexibility. In reinforcement learning, this inflexibility can reflect asymmetric learning from outcomes above and below expectations. In alternative frameworks, it reflects perseveration independent of learning. Here, we examine evidence for asymmetric reward-learning in OCD and PG by leveraging model-based functional magnetic resonance imaging (fMRI). Compared with healthy controls (HC), OCD patients exhibited a lower learning rate for worse-than-expected outcomes, which was associated with the attenuated encoding of negative reward prediction errors in the dorsomedial prefrontal cortex and the dorsal striatum. PG patients showed higher and lower learning rates for better- and worse-than-expected outcomes, respectively, accompanied by higher encoding of positive reward prediction errors in the anterior insula than HC. Perseveration did not differ considerably between the patient groups and HC. These findings elucidate the neural computations of reward-learning that are altered in OCD and PG, providing a potential account of behavioural inflexibility in those mental disorders.


Assuntos
Jogo de Azar , Transtorno Obsessivo-Compulsivo , Humanos , Reforço Psicológico , Recompensa , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Imageamento por Ressonância Magnética
7.
Biol Psychiatry ; 93(5): 391-404, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36725139

RESUMO

Modern brainwide transcriptional atlases provide unprecedented opportunities for investigating the molecular correlates of brain organization, as quantified using noninvasive neuroimaging. However, integrating neuroimaging data with transcriptomic measures is not straightforward, and careful consideration is required to make valid inferences. In this article, we review recent work exploring how various methodological choices affect 3 main phases of imaging transcriptomic analyses, including 1) processing of transcriptional atlas data; 2) relating transcriptional measures to independently derived neuroimaging phenotypes; and 3) evaluating the functional implications of identified associations through gene enrichment analyses. Our aim is to facilitate the development of standardized and reproducible approaches for this rapidly growing field. We identify sources of methodological variability, key choices that can affect findings, and considerations for mitigating false positive and/or spurious results. Finally, we provide an overview of freely available open-source toolboxes implementing current best-practice procedures across all 3 analysis phases.


Assuntos
Imageamento por Ressonância Magnética , Transcriptoma , Humanos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Encéfalo/diagnóstico por imagem , Perfilação da Expressão Gênica
8.
bioRxiv ; 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36747831

RESUMO

Systematic spatial variation in micro-architecture is observed across the cortex. These micro-architectural gradients are reflected in neural activity, which can be captured by neurophysiological time-series. How spontaneous neurophysiological dynamics are organized across the cortex and how they arise from heterogeneous cortical micro-architecture remains unknown. Here we extensively profile regional neurophysiological dynamics across the human brain by estimating over 6 800 timeseries features from the resting state magnetoencephalography (MEG) signal. We then map regional time-series profiles to a comprehensive multi-modal, multi-scale atlas of cortical micro-architecture, including microstructure, metabolism, neurotransmitter receptors, cell types and laminar differentiation. We find that the dominant axis of neurophysiological dynamics reflects characteristics of power spectrum density and linear correlation structure of the signal, emphasizing the importance of conventional features of electromagnetic dynamics while identifying additional informative features that have traditionally received less attention. Moreover, spatial variation in neurophysiological dynamics is colocalized with multiple micro-architectural features, including genomic gradients, intracortical myelin, neurotransmitter receptors and transporters, and oxygen and glucose metabolism. Collectively, this work opens new avenues for studying the anatomical basis of neural activity.

9.
Nat Comput Sci ; 3(10): 883-893, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38177751

RESUMO

Scientists have developed hundreds of techniques to measure the interactions between pairs of processes in complex systems, but these computational methods-from contemporaneous correlation coefficients to causal inference methods-define and formulate interactions differently, using distinct quantitative theories that remain largely disconnected. Here we introduce a large assembled library of 237 statistics of pairwise interactions, and assess their behavior on 1,053 multivariate time series from a wide range of real-world and model-generated systems. Our analysis highlights commonalities between disparate mathematical formulations of interactions, providing a unified picture of a rich interdisciplinary literature. Using three real-world case studies, we then show that simultaneously leveraging diverse methods can uncover those most suitable for addressing a given problem, facilitating interpretable understanding of the quantitative formulation of pairwise dependencies that drive successful performance. Our results and accompanying software enable comprehensive analysis of time-series interactions by drawing on decades of diverse methodological contributions.

10.
Biol Psychiatry Glob Open Sci ; 2(4): 319-331, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36324650

RESUMO

Noninvasive neuroimaging is a powerful tool for quantifying diverse aspects of brain structure and function in vivo, and it has been used extensively to map the neural changes associated with various brain disorders. However, most neuroimaging techniques offer only indirect measures of underlying pathological mechanisms. The recent development of anatomically comprehensive gene expression atlases has opened new opportunities for studying the transcriptional correlates of noninvasively measured neural phenotypes, offering a rich framework for evaluating pathophysiological hypotheses and putative mechanisms. Here, we provide an overview of some fundamental methods in imaging transcriptomics and outline their application to understanding brain disorders of neurodevelopment, adulthood, and neurodegeneration. Converging evidence indicates that spatial variations in gene expression are linked to normative changes in brain structure during age-related maturation and neurodegeneration that are in part associated with cell-specific gene expression markers of gene expression. Transcriptional correlates of disorder-related neuroimaging phenotypes are also linked to transcriptionally dysregulated genes identified in ex vivo analyses of patient brains. Modeling studies demonstrate that spatial patterns of gene expression are involved in regional vulnerability to neurodegeneration and the spread of disease across the brain. This growing body of work supports the utility of transcriptional atlases in testing hypotheses about the molecular mechanism driving disease-related changes in macroscopic neuroimaging phenotypes.

11.
Sleep Med ; 98: 39-52, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35779380

RESUMO

The widely used guidelines for sleep staging were developed for the visual inspection of electrophysiological recordings by the human eye. As such, these rules reflect a limited range of features in these data and are therefore restricted in accurately capturing the physiological changes associated with sleep. Here we present a novel analysis framework that extensively characterizes sleep dynamics using over 7700 time-series features from the hctsa software. We used clustering to categorize sleep epochs based on the similarity of their time-series features, without relying on established scoring conventions. The resulting sleep structure overlapped substantially with that defined by visual scoring. However, we also observed discrepancies between our approach and traditional scoring. This divergence principally stemmed from the extensive characterization by hctsa features, which captured distinctive time-series properties within the traditionally defined sleep stages that are overlooked with visual scoring. Lastly, we report time-series features that are highly discriminative of stages. Our framework lays the groundwork for a data-driven exploration of sleep sub-stages and has significant potential to identify new signatures of sleep disorders and conscious sleep states.


Assuntos
Eletroencefalografia , Fases do Sono , Análise por Conglomerados , Eletroencefalografia/métodos , Humanos , Polissonografia/métodos , Sono/fisiologia , Fases do Sono/fisiologia , Fatores de Tempo
12.
Sci Adv ; 8(22): eabm6127, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35658036

RESUMO

The complex connectivity of nervous systems is thought to have been shaped by competitive selection pressures to minimize wiring costs and support adaptive function. Accordingly, recent modeling work indicates that stochastic processes, shaped by putative trade-offs between the cost and value of each connection, can successfully reproduce many topological properties of macroscale human connectomes measured with diffusion magnetic resonance imaging. Here, we derive a new formalism that more accurately captures the competing pressures of wiring cost minimization and topological complexity. We further show that model performance can be improved by accounting for developmental changes in brain geometry and associated wiring costs, and by using interregional transcriptional or microstructural similarity rather than topological wiring rules. However, all models struggled to capture topographical (i.e., spatial) network properties. Our findings highlight an important role for genetics in shaping macroscale brain connectivity and indicate that stochastic models offer an incomplete account of connectome organization.

13.
Front Comput Neurosci ; 16: 847336, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547660

RESUMO

New brain atlases with high spatial resolution and whole-brain coverage have rapidly advanced our knowledge of the brain's neural architecture, including the systematic variation of excitatory and inhibitory cell densities across the mammalian cortex. But understanding how the brain's microscale physiology shapes brain dynamics at the macroscale has remained a challenge. While physiologically based mathematical models of brain dynamics are well placed to bridge this explanatory gap, their complexity can form a barrier to providing clear mechanistic interpretation of the dynamics they generate. In this work, we develop a neural-mass model of the mouse cortex and show how bifurcation diagrams, which capture local dynamical responses to inputs and their variation across brain regions, can be used to understand the resulting whole-brain dynamics. We show that strong fits to resting-state functional magnetic resonance imaging (fMRI) data can be found in surprisingly simple dynamical regimes-including where all brain regions are confined to a stable fixed point-in which regions are able to respond strongly to variations in their inputs, consistent with direct structural connections providing a strong constraint on functional connectivity in the anesthetized mouse. We also use bifurcation diagrams to show how perturbations to local excitatory and inhibitory coupling strengths across the cortex, constrained by cell-density data, provide spatially dependent constraints on resulting cortical activity, and support a greater diversity of coincident dynamical regimes. Our work illustrates methods for visualizing and interpreting model performance in terms of underlying dynamical mechanisms, an approach that is crucial for building explanatory and physiologically grounded models of the dynamical principles that underpin large-scale brain activity.

15.
Elife ; 102021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34783653

RESUMO

Gene expression fundamentally shapes the structural and functional architecture of the human brain. Open-access transcriptomic datasets like the Allen Human Brain Atlas provide an unprecedented ability to examine these mechanisms in vivo; however, a lack of standardization across research groups has given rise to myriad processing pipelines for using these data. Here, we develop the abagen toolbox, an open-access software package for working with transcriptomic data, and use it to examine how methodological variability influences the outcomes of research using the Allen Human Brain Atlas. Applying three prototypical analyses to the outputs of 750,000 unique processing pipelines, we find that choice of pipeline has a large impact on research findings, with parameters commonly varied in the literature influencing correlations between derived gene expression and other imaging phenotypes by as much as ρ ≥ 1.0. Our results further reveal an ordering of parameter importance, with processing steps that influence gene normalization yielding the greatest impact on downstream statistical inferences and conclusions. The presented work and the development of the abagen toolbox lay the foundation for more standardized and systematic research in imaging transcriptomics, and will help to advance future understanding of the influence of gene expression in the human brain.


Assuntos
Encéfalo/metabolismo , Perfilação da Expressão Gênica/instrumentação , Software , Perfilação da Expressão Gênica/normas , Humanos , Padrões de Referência , Transcriptoma , Fluxo de Trabalho
16.
Neuroimage ; 244: 118570, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34508898

RESUMO

The integration of modern neuroimaging methods with genetically informative designs and data can shed light on the molecular mechanisms underlying the structural and functional organization of the human connectome. Here, we review studies that have investigated the genetic basis of human brain network structure and function through three complementary frameworks: (1) the quantification of phenotypic heritability through classical twin designs; (2) the identification of specific DNA variants linked to phenotypic variation through association and related studies; and (3) the analysis of correlations between spatial variations in imaging phenotypes and gene expression profiles through the integration of neuroimaging and transcriptional atlas data. We consider the basic foundations, strengths, limitations, and discoveries associated with each approach. We present converging evidence to indicate that anatomical connectivity is under stronger genetic influence than functional connectivity and that genetic influences are not uniformly distributed throughout the brain, with phenotypic variation in certain regions and connections being under stronger genetic control than others. We also consider how the combination of imaging and genetics can be used to understand the ways in which genes may drive brain dysfunction in different clinical disorders.


Assuntos
Encéfalo/diagnóstico por imagem , Conectoma/métodos , Variação Biológica da População , Humanos , Neuroimagem , Fenótipo , Transcriptoma , Gêmeos
17.
Nat Commun ; 12(1): 4237, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244483

RESUMO

Brain network hubs are both highly connected and highly inter-connected, forming a critical communication backbone for coherent neural dynamics. The mechanisms driving this organization are poorly understood. Using diffusion-weighted magnetic resonance imaging in twins, we identify a major role for genes, showing that they preferentially influence connectivity strength between network hubs of the human connectome. Using transcriptomic atlas data, we show that connected hubs demonstrate tight coupling of transcriptional activity related to metabolic and cytoarchitectonic similarity. Finally, comparing over thirteen generative models of network growth, we show that purely stochastic processes cannot explain the precise wiring patterns of hubs, and that model performance can be improved by incorporating genetic constraints. Our findings indicate that genes play a strong and preferential role in shaping the functionally valuable, metabolically costly connections between connectome hubs.


Assuntos
Encéfalo/fisiologia , Conectoma , Redes Reguladoras de Genes , Rede Nervosa/fisiologia , Adulto , Encéfalo/diagnóstico por imagem , Conjuntos de Dados como Assunto , Imagem de Difusão por Ressonância Magnética , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Modelos Genéticos , Gêmeos
18.
Nat Commun ; 12(1): 2669, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976144

RESUMO

Transcriptomic atlases have improved our understanding of the correlations between gene-expression patterns and spatially varying properties of brain structure and function. Gene-category enrichment analysis (GCEA) is a common method to identify functional gene categories that drive these associations, using gene-to-category annotation systems like the Gene Ontology (GO). Here, we show that applying standard GCEA methodology to spatial transcriptomic data is affected by substantial false-positive bias, with GO categories displaying an over 500-fold average inflation of false-positive associations with random neural phenotypes in mouse and human. The estimated false-positive rate of a GO category is associated with its rate of being reported as significantly enriched in the literature, suggesting that published reports are affected by this false-positive bias. We show that within-category gene-gene coexpression and spatial autocorrelation are key drivers of the false-positive bias and introduce flexible ensemble-based null models that can account for these effects, made available as a software toolbox.


Assuntos
Encéfalo/metabolismo , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Anotação de Sequência Molecular/métodos , Animais , Humanos , Masculino , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes , Software
19.
J Physiol ; 599(11): 2907-2932, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33599980

RESUMO

KEY POINTS: TMS is commonly used to study excitatory/inhibitory neurotransmission in cortical circuits. Changes in cortical excitability following TMS are typically measured from hand (using EMG; limited to motor cortex) or scalp (using EEG); however, it is unclear whether these two measures represent the same activity when assessing motor cortex. We found that TMS-EMG and TMS-EEG measures of motor cortex excitability are differentially affected by sensory confounds at different time points, masking any actual relationship between them in the time domain. In the frequency domain, local high-frequency oscillations in EEG recordings were minimally confounded by sensory artefacts and demonstrated strong correlations with EMG measures of cortical excitability across time, regardless of TMS intensity or waveform. Therefore, despite the effects of sensory artefacts, the two measures of motor cortex excitability share a response component, suggesting that they index a similar cortical activity and perhaps the same neuronal population. ABSTRACT: Transcranial magnetic stimulation (TMS) is a powerful tool for investigating cortical circuits. Changes in cortical excitability following TMS are typically assessed by measuring changes in either conditioned motor-evoked potentials (MEPs) following paired-pulse TMS over motor cortex or evoked potentials measured with electroencephalography following single-pulse TMS (TEPs). However, it is unclear whether these two measures of cortical excitability index the same cortical response. Twenty-four healthy participants received local and interhemispheric paired-pulse TMS over motor cortex with eight inter-pulse intervals, sub- and suprathreshold conditioning intensities, and two different pulse waveforms, while MEPs were recorded from a hand muscle. TEPs were also recorded in response to single-pulse TMS using the conditioning pulse alone. The relationships between TEPs and conditioned-MEPs were evaluated using metrics sensitive to both their magnitude at each time point and their overall shape across time. The impacts of undesired sensory potentials resulting from TMS pulse and muscle contractions were also assessed on both measures. Both conditioned-MEPs and TEPs were sensitive to re-afferent somatosensory activity following motor-evoked responses, but over different post-stimulus time points. Moreover, the amplitude of low-frequency oscillations in TEPs was strongly correlated with the sensory potentials, whereas early and local high-frequency responses showed minimal relationships. Accordingly, conditioned-MEPs did not correlate with TEPs in the time domain but showed high shape similarity with the amplitude of high-frequency oscillations in TEPs. Therefore, despite the effects of sensory confounds, the TEP and MEP measures share a response component, suggesting that they index a similar cortical response and perhaps the same neuronal populations.


Assuntos
Córtex Motor , Estimulação Magnética Transcraniana , Eletroencefalografia , Potenciais Evocados , Potencial Evocado Motor , Humanos
20.
Neuroimage ; 224: 117395, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32979525

RESUMO

The structure of the adult brain is the result of complex physical mechanisms acting in three-dimensional space through development. Consequently, the brain's spatial embedding plays a key role in its organization, including the gradient-like patterning of gene expression that encodes the molecular underpinning of functional specialization. However, we do not yet understand how changes in brain shape and size that occur across development influence the brain's transcriptional architecture. Here we investigate the spatial embedding of transcriptional patterns of over 1800 genes across seven time points through mouse-brain development using data from the Allen Developing Mouse Brain Atlas. We find that transcriptional similarity decreases exponentially with separation distance across all developmental time points, with a correlation length scale that follows a power-law scaling relationship with a linear dimension of brain size. This scaling suggests that the mouse brain achieves a characteristic balance between local molecular similarity (homogeneous gene expression within a specialized brain area) and longer-range diversity (between functionally specialized brain areas) throughout its development. Extrapolating this mouse developmental scaling relationship to the human cortex yields a prediction consistent with the value measured from microarray data. We introduce a simple model of brain growth as spatially autocorrelated gene-expression gradients that expand through development, which captures key features of the mouse developmental data. Complementing the well-known exponential distance rule for structural connectivity, our findings characterize an analogous exponential distance rule for transcriptional gradients that scales across mouse brain development, providing new understanding of spatial constraints on the brain's molecular patterning.


Assuntos
Encéfalo , Córtex Cerebral/fisiologia , Expressão Gênica/fisiologia , Tamanho do Órgão/fisiologia , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...